
Moreesc Documentation
Release 2.0

F. Silva, Ch. Vergez, J. Kergomard and Ph. Guillemain

Jan 07, 2013

Contents

1 Profiles – Time-varying quantities 3
1.1 Academic profiles . 5
1.2 Using measured values . 7

2 Valve – Specifiyng the mechanical resonator 9
2.1 Simple examples of Valve . 11

3 AcousticResonator – Specifiyng the acoustical resonator 13
3.1 Physical constants . 13
3.2 General class: everything can be time variable 14
3.3 Time-invariant version . 16
3.4 Cylindrical bore . 18
3.5 Measured Impedance . 19
3.6 References . 22

4 Simulation – Time-domain simulation 23
4.1 Defining the problem . 23
4.2 Configuring the solver and integrate . 25
4.3 Postprocessing . 25
4.4 Data persistence . 27

5 Indices and tables 29

Bibliography 31

Python Module Index 33

Python Module Index 35

Index 37

i

ii

Moreesc Documentation, Release 2.0

MOREESC is an application for the calculations of the auto-oscillations in wind instruments,
designed originally for single reed instruments but it would be usable for brass too. It takes
advantage of a modal decomposition of the acoustic pressure field in the bore, or of its input
impedance, to let you compute the sound of any strangely-shaped instrument.

This document is intended to be used as a reference guide, but also be read as a long and detailed
tutorial as the useful functions and class are also sequentially described here.

Contents 1

Moreesc Documentation, Release 2.0

2 Contents

CHAPTER 1

Profiles – Time-varying quantities

Moreesc is intended to deal with time-varying control parameters and time-evolving characteristics
of resonator and valve. This module provide the framework for modelling simple or real-world data,
and be able to perform efficient computation on them. It builds instances of Profile (or one of
its subclass) that can easily be evaluated within the calculation of self-sustained oscillations.

In addition to basic constant and linear profiles Constant and Linear, Spline is based on B-
splines [BSplines], which are transformed without any approximation into a sequence of Bezier
curves [Bezier] for a cheaper evaluation during the calculation of oscillations. Measured signals
can thus be parametrized and used with the computation (see Signal). Spline (and its subclass
Signal) can easily be manipulated by means of a graphical Spline.editor().

Profiles.C2_Step

Profiles.Profile

Profiles.Constant

Profiles.SmoothStep

Profiles.Linear

Profiles.Spline Profiles.Signal

Profiles.GroupProfiles

class Profiles.Profile(dtype=<type ‘float’>)
General class intended to provide a parametrization of temporal evolution of coefficients
of the model. The method used here bases on a decomposition into a sequence of Bezier
curves in the (t,value) plane.

The coefs attribute consists of a (2; 4n)-shaped numpy array, the two lines containing the
instants and the values of the nodes, respectively. Groups of 4 rows defines the four Bezier
nodes of each Bezier curves (of degree 3). Thus the n-th curves of the Profile is made from

3

Moreesc Documentation, Release 2.0

the nodes

8 i 2 [0; 3]; t = coefs[0; 4 � n + i]; value = coefs[1; 4 � n + i]:

Examples

>>> f = Profiles.Profile() # Dummy empty profile, constant 0.
>>> print f
<moreesc.Profiles.Profile object at 0xb05e78c> empty
>>> print f.coefs # No coefficients in the empty profile
[]

Attributes

coefs array The coefficients that parametrizes the Profile as a sequence of Bezier curves.

__call__(t)
Evaluate the profile at various instants using the compiled functions
(d|z)profile_eval().

Parameters
t: array-like :

Sequence of instants where to evaluate the profile.

Returns
out: array :

The values of the profile at those instants. Returned with the same
shape as the input.

Examples

>>> print f(0.0) # Initial (at t=0) value of f
0.0
>>> t = np.linspace(0,1, 1024) # Time vector
>>> print f(t) # f sampled at 1024Hz.
array([0., 0., 0., ..., 0., 0., 0.])

save(filename)
Saves instance to file using pickle [pick]. Note that this format may not be the more
appropriate for exchange with other scientific software (see numpy and scipy I/O).

See Profiles.load_profile() for loading.

Examples

>>> f.save(’/tmp/profile.dat’)
>>> g = Profiles.load_profile(’/tmp/profile.dat’)
>>> print g
<moreesc.Profiles.Profile at 0xb070ccc> ...

Profiles.load_profile(s)
Load data saved with the Profile.save() method:

Parameters
filename: file-like object (file or string) :

4 Chapter 1. Profiles – Time-varying quantities

Moreesc Documentation, Release 2.0

Name of the file to load.

Returns
obj: Profile or subclass :

Stored Profile

class Profiles.GroupProfiles(profiles, keys=None)
Defines a group of Profiles that can all be evaluated in a single call. The coefficients of
each Profile are concatenated in on big array (coefs_array), and information about their
respective shapes are grouped in the attribute shapes_array.

Individual Profiles stored within an instance of this class can be accessed as if GroupProfiles
is a simple list, or even as if it is a dictionnary if a dictionnary or keys are provided.

__call__(t)
Evaluate the group of profile at various instants using the compiled functions
(d|z)group_profile_eval().

Parameters
t: array-like :

Sequence of instants where to evaluate the profile.

Returns
out: list of arrays :

The values of the profiles at those instants. Returned with the same
shape as the input. Each element of the list is associated to one of
the Profiles

save(filename)
Saves instance to fileusing pickle [pick]. See Profiles.load_groupprofiles() for
loading.

Profiles.load_groupprofiles(s)
Load data saved with the GroupProfiles.save() method:

Parameters
filename: file-like object (file or string) :

Name of the file to load.

Returns
obj: GroupProfiles :

Stored GroupProfiles

1.1 Academic profiles

The following class are convenient subclass of the general Profiles.Profile class. Basic arith-
metic (+,-,*,^,/) is available and warning are emitted when approximation is used during the
operation.

class Profiles.Constant(value)
Bases: Profiles.Profile

Profile subclass to handle constant real values.

1.1. Academic profiles 5

Moreesc Documentation, Release 2.0

Attributes

value float The numeric value of the Profiles.Constant instance

class Profiles.Linear(instants, values)
Bases: Profiles.Profile

Profile subclass to handle linearly varying values.

class Profiles.Spline(tck)
Bases: Profiles.Profile

Spline represents a parametrization of a time-varying quantity. It is modelled with BSpline
of degree 3, leading (under normal conditions) to a C2 continuous.

Attributes

t,c,k : Tuple (t; c; k) as used in the scipy spline library [spl]

editor()
Raise a graphical user interface to manipulate the control points of the spline. If called
from a Signal instance, it allows to change the tolerance of fitting procedure.

1.1.1 Examples

>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0,1,2014)
>>> f = moreesc.Profiles.Constant(0.5); valf = f(t)
>>> g = moreesc.Profiles.Linear([0.1, .2, .7], [1., -.3, .1]); valg = g(t)
>>> knots = np.array([0.2, 0.2, 0.2, 0.2, .25, .5, .8, .8, .8, .8])
>>> coefs = [np.array([.08, .33, .5, .74, .83, .9]),]
>>> h = moreesc.Profiles.Spline([knots, coefs, 3]); valh = h(t)
>>> plt.plot(t, valf, label=’f’)
>>> plt.plot(t, valg, g.instants, g.coefs, ’+’, c=’r’, label=’g’)
>>> plt.plot(t, valh, label=’h’)
>>> plt.legend(); plt.xlabel(r’t’); plt.show()

6 Chapter 1. Profiles – Time-varying quantities

Moreesc Documentation, Release 2.0

0.0 0.2 0.4 0.6 0.8 1.0
t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

g

g

h

1.2 Using measured values

class Profiles.Signal(time=None, signal=None, smoothness=1.0)
Bases: Profiles.Spline

Spline represents a parametrization of a signal, for example a measured mouth pressure.

Attributes

time, signal arrays The samples of the signal to be parametrized.
s float The tolerance of fitting (also called smoothing condition in [spl]).
w float or array Weighting coefficients (see [spl]).

Examples

>>> tmp = np.load(’Signal.npz’); sig = tmp[’sig’]; t = tmp[’t’]
>>> plt.plot(t, sig, label=’Original’)
>>> f = moreesc.Profiles.Signal(t, sig, smoothness=1.)
>>> plt.plot(t, f(t), label=r’Profile $s=1$’)
>>> f.fit_spline(s=5.*f.sref); plt.plot(t, f(t), label=r’Profile $s=5$’)
>>> f.fit_spline(s=20.*f.sref); plt.plot(t, f(t), label=r’Profile $s=20$’)
>>> plt.legend(loc=’lower right’); plt.xlabel(r’t’); plt.show()

1.2. Using measured values 7

Moreesc Documentation, Release 2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Original

Profile s=1

Profile s=5

Profile s=20

__init__(time=None, signal=None, smoothness=1.0)
Constructor for Signal class. :param signal: the samples of the signal to be
parametrized, :param time: the sampling instants. The spline curve fitting is applied
in this constructor with defaut values of tolerance (s) and ponderation (w) but it can
be refined by calling fit_spline() method.

fit_spline(s=None, w=None)
Fit a B-spline representation of the provided signal. For sake of simplicity in the editor,
the B-spline is N-D (with N=1) and the parameter values are the samples instants.
See scipy.interpolate.splprep for details on the smoothing factor s and the weights w.

8 Chapter 1. Profiles – Time-varying quantities

CHAPTER 2

Valve – Specifiyng the mechanical
resonator

This module provides the class objects useful for the description of the valve.

class Valve.TransferFunction(num, den)
A general class to represent systems by means of Laplace transform. It describes a linear
dynamical system by numerator and denominator polynomials of the s variable.

F (s = �+ j!) =

∑M
m=0 bms

M�m∑N
=0

ansN�n

with M < N, usually evaluated on the frequency axis s = j!.

Attributes

num,denProfiles.GroupProfilescontain the (possibly time variable) coefficients of the numerator
and the denominator of the TransferFunction instance.

__init__(num, den)
Constructor of the TransferFunction class.

Parameters
num, den : list of scalars or list of Profiles

Sequence of the coefficients (potentially time varying) of numera-
tor and denominator polynomials from highest powers of the Laplace
variable s to lowest.

__call__(s, t=0.0)
Evaluate the transfer function for the given values of the Laplace variable s. As the
coefficients may (slowly) depend on time, the frequency response is itself dynamic
(depends on time).

Parameters
s : array-like

List of values of Laplace variable at which transfer function is evalu-
ated.

t : scalar, optional

9

Moreesc Documentation, Release 2.0

Instant to consider when evaluating the coefficients of the transfer
function. Default is 0.

Returns
H : list of frequency responses (one per instant required).

trace(f=None, linlog=’lin’, t=[0.0])
Plots representations of the frequency response. The graphics properties can be modi-
fied directly on the returned object.

Parameters
f : array-like, optional

Frequencies at which frequency response is evaluated.

linlog : string, optional

The modulus is displayed with a linear axis if lin, with a logarithmic
axis if log. An exception is raised in others cases.

t : scalar, optional

Instant to consider when evaluating the coefficients of the transfer
function. Default is 0.

Returns
Fig : matplotlib.Figure

The figure object

get_poles(t=0.0)
Evaluate the location of the poles of the transfer function. As the coefficients may
(slowly) depend on time, the poles may vary.

Parameters
t : scalar, optional

Instant to consider when evaluating the coefficients of the transfer
function. Default is 0.

Returns
H : list of lists of poles (one per instant required).

get_zeros(t=0.0)
Evaluate the location of the zeros of the transfer function. As the coefficients may
(slowly) depend on time, the zeros may vary.

Parameters
t : scalar, optional

Instant to consider when evaluating the coefficients of the transfer
function. Default is 0.

Returns
H : list of lists of zeros (one per instant required).

10 Chapter 2. Valve – Specifiyng the mechanical resonator

Moreesc Documentation, Release 2.0

Warning: The computation of the opening signal resulting from the application of the transfer
function on a pressure signal is performed using the canonical observer form with the following
state representation

_X(t) = AX(t) + Bp(t) and h(t) = CX(t)

with

A =

�a1 1 0 � � � 0

�a2 0 1 0
...

...
. . .

...
�aN�1 0 � � � 0 1

�aN 0 � � � � � � 0

 , B =
(
0 � � � 0 bM � � � b0

)T
and C =

(
1 0 � � � 0

)
:

The trouble is that this formulation solves the following equation:

dNh

dtN
+

N�1∑
n=0

dn

dtn
(
aN�n(t)h(t)

)
=

M∑
m=0

dm

dtm
(
bM�m(t)p(t)

)
which may differ from the original one:

dNh

dtN
+

N�1∑
n=0

aN�n
dnh

dtn
=

M∑
m=0

bM�m(t)
dmp

dtm

when the coefficients vary with respect to time. It is assumed that the variation of the coeffi-
cients are slow in comparison with the fundamental frequency of the sound to be synthetised.

2.1 Simple examples of Valve

One common example of Valve.TransferFunction is the one degree of freedom oscillator,
defined in the subclass Valve.OneDOFOscillator:

class Valve.OneDOFOscillator(wr, qr, H0=1.0, beating_factor=0.0)
Bases: Valve.TransferFunction

A TransferFunction subclass intended to model a single degree of freedom oscillator.

H(s) =
H0

1 + qr
s
!r

+ s2

!2
r

:

Attributes

wr Profile Natural angular frequency of the oscillator
qr Profile Damping of the oscillator
HO Profile Low frequency gain of the oscillator

2.1. Simple examples of Valve 11

Moreesc Documentation, Release 2.0

Warning: The previous warning result in solving, for the one d.o.f. oscillator, the equation

d2h

dt2
+ qr!r

dh

dt
+
(
!2r +

d

dt
(qr!r)

)
h(t) = H0(t)p(t)

This may be interpreted as the numerical dispersion of the scheme, depending on the time
variation of the natural frequency and its damping.

For backward-compatibility purpose, the two following convenient classes are provided, inheriting
Valve.OneDOFOscillator attributes

class Valve.ReedDynamics(wr, qr, kr=1000000.0, beating_factor=1000.0)
Bases: Valve.OneDOFOscillator

ReedDynamics provides a one degree of freedom mechanical oscillator that models the reed.
It defines the characteristics of the transfer function between the pressure difference (between
mouth pm and mouthpiece pe) and the reed channel opening h.

d2h

dt2
+ qr!r

dh

dt
+ !2r (h � h0) =

!2r
Kr

(pe(t)� pm(t))

with an inward valve behaviour: Kr > 0.

Attributes

wr Profile Natural angular frequency of a vibrational mode of the reed,
qr Profile Damping of the same vibrational mode,
Kr Profile Mechanical stiffness of the reed (quasi static value),
W float Width of the reed opening.

If needed, a constant valve «width» can be defined and passed to Fortran code. It may be
used when it is assumed that the reed channel opening is rectangular of height h(t) and
constant width W .

Warning: Reed-motion induced flow is by now disabled.

class Valve.LipDynamics(wr, qr, kr=1000000.0, beating_factor=0.0)
Bases: Valve.OneDOFOscillator

LipDynamics provides a one degree of freedom mechanical oscillator that models the lip. It
defines the characteristics of the transfer function between the pressure difference (between
mouth pm and mouthpiece pe) and the lip channel opening h.

d2h

dt2
+ qr!r

dh

dt
+ !2r (h � h0) =

!2r
Kr

(pe(t)� pm(t))

with an outward valve behaviour: Kr < 0.

Attributes

wr Profile Natural angular frequency of a vibrational mode of the lip,
qr Profile Damping of the same vibrational mode,
Kr Profile Mechanical stiffness of the lip (quasi static value),
W float Width of the lip opening.

12 Chapter 2. Valve – Specifiyng the mechanical resonator

CHAPTER 3

AcousticResonator – Specifiyng the
acoustical resonator

This module provides the class objects useful for the modal description of the acoustic resonator.
The base class for the definition is the AcousticResonator.Impedance described by its complex
modes. Instances are constructed using numerical values or Profile parametrization of poles and
residues..

Z(s = �+ j!) =

N∑
n=1

Cn

s � sn
+

C�n
s � s�n

usually evaluated on the frequency axis

Z(!) =

N∑
n=1

Cn

j! � sn
+

C�n
j! � s�n

:

Warning: Only the positive frequency poles (i.e. the poles having positive imaginary part)
have to be handled, as Hermitian symmetry is assumed.

3.1 Physical constants

Here are the constants used to compute the wavelength or the characteristic impedance
for example.

AcousticResonator.c = 346.1924588600005
Wave speed in free space (m=s)

AcousticResonator.rho = 1.1851294093959732
Density of the air (kg=m3)

Acoustics in quite narrow ducts involves viscous and thermal effects in the vicinity of
the rigid walls. The following parameters are useful to compute the dissipation in such
resonators.

AcousticResonator.Cp = 240.0
Specific heat under constant pressure (Cal=(kg:�C))

13

Moreesc Documentation, Release 2.0

AcousticResonator.Cv = 171.18402282453638
Specific heat at constant volume (Cal=(kg:�C))

AcousticResonator.Cpv = 1.402
Ratio of the specific heats Cp=Cv

AcousticResonator.nu = 1.831037488e-05
Shear coefficient (kg=m=s)

AcousticResonator.lv = 4.4628661036010312e-08
Viscous boundary layer thickness (m)

AcousticResonator.kappa = 0.00624297844
Thermal conductivity (Cal=(m:s:�C))

AcousticResonator.lt = 6.3401161563647621e-08
Thermal boundary layer thickness (m)

If you intent to compare simulations with experiments, you may need to set the tem-
perature of the simulation (default is 298K), so that wave speed and other acoustical
constant used in the computations match the experimental ones.

AcousticResonator.physical_constants(Temp=298.0)
Updates the acoustical constants according to the specified temperature.

Parameters
Temp : float

The experiment temperature (in Kelvin).

Musical instruments are generally intended to radiate sound

AcousticResonator.radiation_a

AcousticResonator.radiation_b
radiation_a and radiation_b are the coefficients of an approximated radiation
impedance for an unflanged cylinder [Silva:2009].

3.2 General class: everything can be time variable

class AcousticResonator.TimeVariantImpedance(sn=None, Cn=None, reduced=False,
Zc=None)

A general class to represent the input impedance of a acoustic resonator.

Attributes

Zc Profile Characteristic impedance of the resonator (used for reduced
residues).

poles GroupPro-
files

Poles sn of the input impedance.

residus GroupPro-
files

Residues Cn associated to the poles.

nbmodal integer Number of modes in the instance.

14 Chapter 3. AcousticResonator – Specifiyng the acoustical resonator

Moreesc Documentation, Release 2.0

Warning: Moreesc requires a physical (non dimensionless) input impedance
to compute the possible self-oscillations. You can either provide full-featured
or dimensionless residues, but you must indicate it to the constructer with the
reduced argument. In the latter case, you must also indicate the characteristic
impedance Z_c, otherwise it is optional and only used to compute the reflection
coefficient in Impedance.trace().

__init__(sn=None, Cn=None, reduced=False, Zc=None)

Parameters
sn: array or :class:‘Profiles.GroupProfiles‘ :

Poles of the acoustic resonator. If it is time-invariant, a list or array
of N complex values (one per resonance) is sufficient. If not, provide
a:class:Profiles.GroupProfiles instance (possible complex-valued).

Cn: array or :class:‘Profiles.GroupProfiles‘ :

Residue of the input impedance of the acoustic resonator. See sn for
explanation on format.

Zc: float or Profile :

The (possibly time-variant) characteristics impedance of the acoustic
resonator. Optional if the residues are not dimensionless, as it is then
only used to compute reflection coefficient.

reduced: bool :

Flag indicating whether residue value are dimensionless or not. If
True, value of the characteristics impedance is mandatory and residus
are then dimensioned according to Zc.

__call__(s, t=[0.0])
Evaluates the expression Z(s) for the specified values of s. The evaluation is done
using the compiled function modal_impedance.

Parameters
s : array-like

List of values of Laplace variable at which transfer function is evalu-
ated. If purely real valued, it is interpreted as a array of frequencies
(and thus multiplied by 2�)

t : scalar, optional

Instant to consider when evaluating the coefficients of the transfer
function. Default is 0.

Returns
Z : list of frequency responses (one per instant required).

trace(f=None, figs=None, linlog=’lin’, t=[0.0], reduced=False)
Plots representations of the frequency response. The graphics properties can be modi-
fied directly on the returned object.

3.2. General class: everything can be time variable 15

Moreesc Documentation, Release 2.0

Parameters
f : array-like, optional

Frequencies at which frequency response is evaluated.

figs : list, optional

list of two Figure instances in which Z and R are shown.

linlog : string, optional

The modulus is displayed with a linear axis if lin, with a logarithmic
axis if log, and an exception is raised otherwise.

t : scalar, optional

Instant to consider when evaluating the coefficients of the transfer
function. Default is 0.

Returns
Fig : matplotlib.Figure

The figure object

save(filename)
Saves instance to file using pickle [pick]. See load_impedance() for loading.

AcousticResonator.load_impedance(s)
Load data saved with the Time(Inv|V)ariantImpedance.save() method:

Parameters
filename: file-like object (file or string) :

Name of the file to load.

Returns
obj: TimeInvariantImpedance or TimeVariantImpedance :

Stored Time(Inv|V)ariantImpedance

AcousticResonator.restore(filename)
Restore a ResonateurModesComplexes instance from file.

Warning: Obsolete! Allow one to restore impedance created with previous versions of
Moreesc

Parameters
filename : str or file

A handle for the file to load.

Returns
Ze : TimeInvariantImpedance

A TimeInvariantImpedance instance constructed with old-style.

3.3 Time-invariant version

The time-invariant counterpart is also available, simplifying syntax for user.

16 Chapter 3. AcousticResonator – Specifiyng the acoustical resonator

Moreesc Documentation, Release 2.0

class AcousticResonator.TimeInvariantImpedance(sn=None, Cn=None, re-
duced=False, Zc=None)

Simplified class for time invariant acoustic resonator.

Attributes

Zc float Characteristic impedance (required for reduced residues).
poles complex array Poles sn
residus complex array Residues Cn associated to the poles
nbmodal integer Number of positives modes in the instance.

__init__(sn=None, Cn=None, reduced=False, Zc=None)

Parameters
sn: array :

Poles of the acoustic resonator.

Cn: array :

Residue of the input impedance of the acoustic resonator.

Zc: float :

The characteristics impedance of the acoustic resonator. Optional if
the residues are not dimensionless, as it is then only use to compute
reflection coefficient.

reduced: bool :

Flag indicating whether residue value are dimensionless or not. If
True, value of the characteristics impedance is mandatory and residus
are then dimensioned according to Zc.

save(filename)
Saves instance to file using pickle [pick]. See load_impedance() for loading.

Using this class directly may be convenient when you are studying the effect of the frequency
or the damping of a particular resonance peak. But manipulating poles and residues may not
be right comfortable. Two functions are available to convert poles/residues pairs into natural
frequency/damping/ amplitude tuple and reciprocally:

Zn

1 + j
qn

(!=!n � !n=!)
=

jZnqn!=!n

1 + jqn!=!n � !2=!2n
=

Cn

j! � sn
+

C�n
j! � s�n

AcousticResonator.snCn2wnqnZn(sn=None, Cn=None)
Converts the tuple (sn, Cn) into (wn, qn, Zn).

Parameters
sn : complex or array-like

Pole (with positive imaginary part)

Cn : complex or array-like

Residue

3.3. Time-invariant version 17

Moreesc Documentation, Release 2.0

Returns
wn : array

Natural angular frequency of the resonance

qn : array

Damping of the resonance (quality factor: 1=qn)

Zn : complex array

Gain of the resonance (peak magnitude)

AcousticResonator.wnqnZn2snCn(wn=None, qn=None, Zn=None)
Converts the tuple (wn, qn, Zn) into (sn, Cn).

Parameters
wn : float or array

Natural angular frequency of the resonance

qn : float or array

Damping of the resonance (quality factor: 1=qn)

Zn : complex or array-like

Gain of the resonance (peak magnitude)

Returns
sn : complex array

Pole (with positive imaginary part)

Cn : complex array

Residue

3.4 Cylindrical bore

A wrapper of AcousticResonator.TimeInvariantImpedance is provided. The class
AcousticResonator.Cylinder defines a cylindrical resonator of length L, radius r and with the
specified number of modes. The boundary conditions used to estimate the modes are

• Radiation impedance at the (fake) bell (see [Silva:2009])

• Neumann condition for pressure at mouthpiece end

class AcousticResonator.Cylinder(L=1.0, r=0.007, radiates=True, nbmodes=10,
losses=’visco-thermal’)

Bases: AcousticResonator.TimeInvariantImpedance

Model a cylindrical bore, possibly radiating.

Warning: By now this configuration is static, i.e. some still need to be done to enable
linear profiles (or more complex ones, like spline) for the attributes of the cylindre (i.e.
length and radius). If such case are wanted, please consider defining an initial cylinder
and a final one, and selecting the way the poles and residues are meant to evolve between
these two states. Be aware that interpolated configurations may not correspond to the
impedance of an intermediate length cylinder...

18 Chapter 3. AcousticResonator – Specifiyng the acoustical resonator

Moreesc Documentation, Release 2.0

Attributes

r float The inner radius of the cylindrical bore (in m)
L float The geometrical length (in m)
radiates bool Boolean indicating whether radiation from the open end is considered.

estimate_poles(S0=None)
Try to locate the poles in the s plane. It uses scipy.optimize.fsolve() which
needs initial guess.

Parameters
S0 : array, optional

Initial guess for poles. If not specified, the default are the poles of the
open-closed lossless cylindrical bore.

Raises
ValueError :

When the root finding is not successfull for one of the poles.

eval_residues(x=0.0, xs=0.0, poles=None)
Evaluates the residues of the previously estimated poles. Analytical expression of the
residues is given in [Silva:PhD].

Parameters
x, xs : float, optional

positions of the observer and of the source. Default are 0, so that it
computes the input impedance.

poles : array, optional

If not specified, the residus associated to each pole are computed.

Returns
residues : optional

If poles are selected, the methods outputs the associated residus.

3.5 Measured Impedance

Although it is still experimental (in the sense of alpha-released), it is possible to define an acoustic
resonator with experimental data, i.e. a sampled measured input impedance obtained with an
apparatus like the ones from CTTM (see [LeRoux:2008]) or the Acoustic Pulse Reflectometry
(see [Sharp:PhD]).

class AcousticResonator.MeasuredImpedance(*args, **kwargs)
Bases: AcousticResonator.TimeInvariantImpedance

Attributes

frequences array The vector of frequency where the impedance has been evaluated
valeurs array The vector of values of the impedance

3.5. Measured Impedance 19

Moreesc Documentation, Release 2.0

estimate_modal_expansion(**kwargs)
Perform the estimation of a modal expansion of the loaded data.

Parameters
algorithm : str ‘Kennelly’ or ‘bruteforce’

Algorithm used to compute the modal expansion.

kwargs : passed to computational routines.

>>> import moreesc.AcousticResonator as mac
>>> Zc = mac.rho * mac.c / (np.pi * (8.4e-3)**2)
>>> Z = mac.MeasuredImpedance(filename=’../../data/ImpedanceBaptiste.mat’, storage=’mat_freqZ’, fmin=60., Zc=Zc)
>>> fapp = [87, 236, 352, 472, 590, 706, 820, 933, 1060, 1184, 1305, 1429]
>>> Z.estimate_modal_expansion(algorithm=’bruteforce’, lFapp=fapp)
Data from measurement device is dimensionless here
>>> Z.residues *= Z.Zc
>>> Z.save(’Impedance.h5’)
>>> f = np.linspace(50., 1500., 2048)
>>> plt.plot(Z.frequencies, np.abs(Z.values), ’-.’, label=’Measured’)
>>> plt.plot(f, np.abs(Z(2.j * np.pi * f)/Zc), label=’Modal fit’)
>>> plt.legend()
>>> plt.xlabel(r’f (Hz)’); plt.ylabel(r’$|Z|$’); plt.show()

0 500 1000 1500 2000
f (Hz)

0

10

20

30

40

50

60

70

|Z
|

Measured

Modal fit

Warning: The autonomous modal expansion is still experimental and you should be careful
and check that the result is correct

20 Chapter 3. AcousticResonator – Specifiyng the acoustical resonator

Moreesc Documentation, Release 2.0

3.5.1 ModalExpansionEstimation – Tools for modelling real world data

Here are presented two ways to perform the modal expansion of a multiple-resonances transfer
function.

Bruteforce optimization

The first one is to perform a bruteforce optimization on the values of coefficient, natural frequency
and quality factor of each of the resonances required.

ModalExpansionEstimation.bruteforce_optimization(freq, Z, lFapp=None,
lQapp=None, lZapp=None,
output_snCn=False,
trace=False, opt-
fun=’complex’, fmin=None,
fmax=None)

Estimate the modal expansion of a frequency response with multiple resonances.

Parameters
lFapp : array-like

List of approximated resonances frequencies (open GUI if none).

lZapp : array-like

List of approximated resonances magnitudes (local max search if
none).

lQapp : array-like

List of approximated resonances quality factors (from phase rotation
if none).

output_snCn : bool

A flag indicating if the result of the optimization must be returned
in poles-residus values (True) or frequency-damping-magnitude values
(False, default).

optfun : str

You can either optimize upon the complex impedance values (use
optfun=’complex’):

min J with J =
∑

jmodel� refj2;

or only on the modulus of impedance (optfun=’modulus’):

min J with J =
∑

(jmodelj � jrefj)2:

Returns
Zn, Fn, Qn : three arrays

The coefficient, natural frequency and quality factor of the resonances

sn, Cn : two arrays

The estimated poles and the residues of the tranfer function.

3.5. Measured Impedance 21

Moreesc Documentation, Release 2.0

Kennelly’s circle fitting

The other one is based on the fact that a Lorentz resonance is represented by a Kennelly’s circle
parametrized by the frequency in the complex plane. Even if this is theoretically true for a single
ddof oscillator, multiple resonances frequency responses require a procedural fitting procedure.
This is implemented here by:

ModalExpansionEstimation.multiple_circles(freq, Z, lFapp=None, out-
put_snCn=False, meth_C=None,
meth_f=None, meth_seq=None,
trace=False)

Estimate the modal expansion of a frequency response with multiple resonances.

Parameters
lFapp : array-like

List of approximated resonances frequencies. It may be unsorted in
order to mention a specific processing order.

meth_seq : str

It defines the sequential algorithm used to minimize the side effect of
adjacent resonances when estimating a single peak’s parameters:

• if it contains ‘eliminate’, then the previously estimated resonances
are sequentially removed from the analyzed data;

• if it contains ‘automagnitude’, approximated guess will be sorted
by associated magnitude values, and the algorithm will process res-
onances by decreasing values.

Combinations are possible, e.g. for example ‘elimi-
nate_automagnitude’

output_snCn : bool

A boolean defining whether the model coefficients (False) or the pole-
residue pairs (True) are returned.

For other parameters, see single_circle docstring. :

Returns
Zn, Fn, Qn : three arrays

The coefficient, natural frequency and quality factor of the resonances

sn, Cn : two arrays

The estimated poles and the residues of the tranfer function.

These two functions required an initial estimation that can be provided by manually selecting peaks
in the graphical visualisation of the curve, or by using the related input arguments. Algorithms for a
single mode are described in [Brandon:1983] for circle fitting [LeRoux:PhD] for modal coefficients
estimation.

3.6 References

22 Chapter 3. AcousticResonator – Specifiyng the acoustical resonator

CHAPTER 4

Simulation – Time-domain simulation

Pay attention to the various attributes created by the differents methods. They are exhibited
within the functions which generate them.

4.1 Defining the problem

class Simulation.TimeDomainSimulation(valve=None, resonator=None, fs=44100.0, in-
tegrator=’vode’, kw_integrator=None, piece-
wise_constant=False, **kwargs)

TimeDomainSimulation gathers all the informations about the configuration of the numer-
ical experimentation.

Attributes

valve A valve object
resonator An acoustic resonator object.
mouth_pressure, opening Profiles.Profile The time-varying control parameters.
fs float The apparent sampling frequency.
time_vector array The time vector.
X0 array The initial condition state vector X(0).
Nx int The lenght of the state vector X
Nac int Number of oscillating acoustical resonances.

During the initialization of the instance, an initial state vector is computed corresponding to
the static regime, may it be stable or not. This may be overridden after the initialization by
calling the conditions_initiales() method

__init__(valve=None, resonator=None, fs=44100.0, integrator=’vode’,
kw_integrator=None, piecewise_constant=False, **kwargs)

Instantiate a new TimeDomainSimulation object given a Valve and a acoustical res-
onator. Additional arguments are

Parameters
pm : Profile

Mouth pressure profile

h0 : Profile

23

Moreesc Documentation, Release 2.0

Channel’s opening at rest

fs : float

the (apparent) sampling frequency of the simulation

integrator : ‘vode’, ‘dopri5’, ‘dop853’, ‘lsoda’, ‘Euler’, ‘EulerRichardson’

the name of the integrator used (see scipy.integrate.ode)

kw_integrator : dict

dictionnary of options to pass to the integrator

piecewise_constant : bool

flag specifying whether the control parameter are kept constant be-
tween two consecutive samples.

Note that the last three parameters can easily be changed during the
:

simulation (see the integrator attribute and its set_integrator
method) :

Examples

>>> D = moreesc.Valve.ReedDynamics(wr=6280., qr=0.4, kr=1e6, W=1.5e-2)
>>> Ze = moreesc.AcousticResonator.Cylinder(L=3., r=7e-3, radiates=False, nbmodes=50)
>>> pm = moreesc.Profiles.Linear(instants=[0., 1.], values=[0., 1e3])
>>> h0 = moreesc.Profiles.Constant(8e-4)
>>> sim = moreesc.Simulation.TimeDomainSimulation(valve=D, resonator=Ze, pm=pm, h0=h0)

set_initial_state(X0=None, *args, **kwargs)
Initialize the state vector. If a vector X0 is given, it is assigned to the initial conditions
within the X0 attribute. If not, the static state vector associated to the mouth pressure
and the valve opening at instant t = 0 is evaluated.

Parameters
X0 : array-like, optional

If specified, it must have the same shape as the state vector.

Examples

>>> sim.set_initial_state(X0=np.ones(sim.Nx))

or

>>> sim.set_initial_state()

The differents situations apply

•X0 is given. It may be a state vector coming from a previous simulation or come
from a random process (it is then not in a steady state).

•X0 is not given. The initial state corresponding to static equilibrium at time t = 0

is computed.

24 Chapter 4. Simulation – Time-domain simulation

Moreesc Documentation, Release 2.0

4.2 Configuring the solver and integrate

You may then run the computation of the trajectory

TimeDomainSimulation.set_integrator(name, **kwargs)

TimeDomainSimulation.integrate(t=1.0, verbose=True)
Solves the set of ordinary differential equations associated to the configuration using the
solver scipy.integrate.ode().

Parameters
time : float

Setting the time range over which integration is performed.

Examples

>>> sim.integrate(1.)

You can interrupt the computation using CTRC-C. It will however update the following
attributes according to the last step computed and extract signals (with the extract_signals
method).

Attributes

time array Discrete time vector
result 2D array Raw data results.
label str A timestamp of the simulation

4.3 Postprocessing

TimeDomainSimulation.trace(tmin=None, tmax=None, trace_signals=True,
trace_components=False, trace_spectrogram=False,
trace_spectrums=False, trace_all=False,
trace_instantaneous_frequency=False, fmax=5000.0,
verbose=False, **kwargs)

Plots several figures, with possible time range reduction

Parameters
tmin, tmax : float, optional

Lower and upper bounds of time range to display.

trace_signals : bool, optional

whether to plot a figure with pressure, opening and volume flow.

trace_components : bool, optional

whether to plot the first components of the pressure field.

trace_spectrogram : bool, optional

whether to plot a spectrogram of the pressure signal

trace_spectrums : bool, optional

4.2. Configuring the solver and integrate 25

Moreesc Documentation, Release 2.0

whether to plot spectrums of pressure, opening and volume flow.

trace_all : bool, optional

whether to plot all the previously mentioned figures.

fmax : float, optional

Maximal frequency to display if spec is True.

TimeDomainSimulation.play(where=’in’)
Plays the sound produced by the computations.

Parameters
where : str ‘in’ or ‘out’

The signal to be played (‘in’ for mouthpiece pressure, ‘out’ for a
pseudo-radiated presure).

TimeDomainSimulation.save_wav(filename=None, fmt=’wav’, where=’out’, re-
move_peaks=False)

Record the pressure into an audio file.

Parameters
filename : File or str

A description of file (will be over-written if existing).

format : str or list of strings

An audio format suitable to audiolab Format class

where : str ‘in’ or ‘out’

The signal used to create the wav file (‘in’ for mouthpiece pressure,
‘out’ for a pseudo-radiated presure).

remove_peaks : bool

Whether to remove peaks

TimeDomainSimulation.extract_signals()
Extract the signals of mouthpiece pressure, volume flow and tip opening from the raw
solution of the set of ODE. An estimation of the radiated pressure is also computed.

They are then available with through the following attributes

26 Chapter 4. Simulation – Time-domain simulation

Moreesc Documentation, Release 2.0

Attributes

pressure ar-
ray

The total pressure in the mouthpiece. It is the sum of the
components.

pm ar-
ray

The excitation pressure in the mouth.

flow ar-
ray

The volume flow entering through the reed channel.

opening ar-
ray

The varying tip opening.

h0 ar-
ray

The tip opening at rest.

exter-
nal_pressure

ar-
ray

An approximation of the radiated sound pressure.

TimeDomainSimulation.get_instantaneous_frequency(mode=’yin’, **kwargs)
Get the instantaneous frequency from the pressure signal using Aubio. To recompute using
another mode, delete the f_i attribute.

TimeDomainSimulation.reconstruct_spatial_field(vectors, decimate=1)
Reconstructs the time-evolving pressure field within the resonator from a simulation result
and knowing the eigenvectors related to the poles of the acoustic resonator.

Parameters
vectors : array-like

The list of the (possibly complex) eigenvectors Shape: self.Nac x
number of nodes

decimate : int, optional

A decimation factor for sampling frequency.

Returns
Ptx : 2d array

The array containing the pressure value for each spatial point and time
instant (time signals as columns, instantaneous pictures as rows)

4.4 Data persistence

TimeDomainSimulation.save(filename=None)
Saves instance to file using pickle [pick]. See load_impedance() for loading.

Examples

>>> sim.save(’/tmp/simulation.dat’)
>>> sim = moreesc.Simulation.load_simulation(’/tmp/simulation.dat’)

Simulation.load_simulation(s)
Load data saved with the TimeDomainSimulation.save() method:

Parameters
filename: file-like object (file or string) :

4.4. Data persistence 27

Moreesc Documentation, Release 2.0

Name of the file to load.

Returns
obj: TimeDomainSimulation :

Stored TimeDomainSimulation

28 Chapter 4. Simulation – Time-domain simulation

CHAPTER 5

Indices and tables

• modindex

• genindex

• search

29

Moreesc Documentation, Release 2.0

30 Chapter 5. Indices and tables

Bibliography

[BSplines] <http://en.wikipedia.org/wiki/B-spline>_

[Bezier] <http://en.wikipedia.org/wiki/Bezier_curve>_

[NPZ] <http://docs.scipy.org/numpy/docs/numpy.lib.format/>_

[spl] <http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html>_

[pick] <http://docs.python.org/library/pickle.html>_

[Silva:PhD] Émergence des auto-oscillations dans les instruments de musique à anche simple, F.
Silva, Université Aix-Marseille, 2009.

[Silva:2009] Approximation of the acoustic radiation impedance of a cylindrical pipe, F. Silva, Ph.
Guillemain, J. Kergomard, B. Mallaroni & A. Norris, Journal of Sound and Vibrations 322(1-2),
pp. 255-263, 2009

[LeRoux:2008] A new impedance tube for large frequency band measurement of absorbing mate-
rials, J.C. Le Roux, J.-P. Dalmont and B. Gazengel, Acoustics‘08, Paris.

[Sharp:PhD] Acoustic pulse reflectometry for the measurement of musical wind instruments,
David B. Sharp, Edinburgh University, 1996.

[LeRoux:PhD] Le haut-parleur électrodynamique: estimation des paramètres électroacous-
tiques aux basses fréquences et modélisation de la suspension, J.-Ch. Le Roux, Université
du Maine, 1994.

[Brandon:1983] A weighted least squares method for circle fitting to frequency response data, J.
A. Brandon and A. Cowley, Journal of Sound and Vibration 89(3), pp. 419-424, 1983.

31

http://en.wikipedia.org/wiki/B-spline
http://en.wikipedia.org/wiki/Bezier_curve
http://docs.scipy.org/numpy/docs/numpy.lib.format/
http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html
http://docs.python.org/library/pickle.html
http://fsilva.perso.ec-marseille/visible/Manuscrit.pdf
http://http://dx.doi.org/10.1016/j.jsv.2008.11.008
http://intellagence.eu.com/acoustics2008/acoustics2008/cd1/data/articles/003579.pdf
http://intellagence.eu.com/acoustics2008/acoustics2008/cd1/data/articles/003579.pdf
http://acoustics.open.ac.uk/802574C70048F266/(httpAssets)/2F951484C0EAB188802574E3003C0308/\protect \T1\textdollar file/thesis.pdf
http://dx.doi.org/10.1016/0022-460x(83)90545-x

Moreesc Documentation, Release 2.0

32 Bibliography

Python Module Index

a
AcousticResonator, 12

m
ModalExpansionEstimation, 20

p
Profiles, 1

s
Simulation, 22

v
Valve, 8

33

Moreesc Documentation, Release 2.0

34 Python Module Index

Python Module Index

a
AcousticResonator, 12

m
ModalExpansionEstimation, 20

p
Profiles, 1

s
Simulation, 22

v
Valve, 8

35

Moreesc Documentation, Release 2.0

36 Python Module Index

Index

Symbols
__call__() (AcousticRes-

onator.TimeVariantImpedance
method), 15

__call__() (Profiles.GroupProfiles method),
5

__call__() (Profiles.Profile method), 4
__call__() (Valve.TransferFunction method),

9
__init__() (AcousticRes-

onator.TimeInvariantImpedance
method), 17

__init__() (AcousticRes-
onator.TimeVariantImpedance
method), 15

__init__() (Profiles.Signal method), 8
__init__() (Simula-

tion.TimeDomainSimulation method),
23

__init__() (Valve.TransferFunction method),
9

A
AcousticResonator (module), 12
AcousticResonator.radiation_a (in module

AcousticResonator), 14
AcousticResonator.radiation_b (in module

AcousticResonator), 14

B
bruteforce_optimization() (in module ModalEx-

pansionEstimation), 21

C
c (in module AcousticResonator), 13
Constant (class in Profiles), 5
Cp (in module AcousticResonator), 13

Cpv (in module AcousticResonator), 14
Cv (in module AcousticResonator), 14
Cylinder (class in AcousticResonator), 18

E
editor() (Profiles.Spline method), 6
estimate_modal_expansion() (AcousticRes-

onator.MeasuredImpedance method),
19

estimate_poles() (AcousticResonator.Cylinder
method), 19

eval_residues() (AcousticResonator.Cylinder
method), 19

extract_signals() (Simula-
tion.TimeDomainSimulation method),
26

F
fit_spline() (Profiles.Signal method), 8

G
get_instantaneous_frequency() (Simula-

tion.TimeDomainSimulation method),
27

get_poles() (Valve.TransferFunction method),
10

get_zeros() (Valve.TransferFunction method),
10

GroupProfiles (class in Profiles), 5

I
integrate() (Simulation.TimeDomainSimulation

method), 25

K
kappa (in module AcousticResonator), 14

37

Moreesc Documentation, Release 2.0

L
Linear (class in Profiles), 6
LipDynamics (class in Valve), 12
load_groupprofiles() (in module Profiles), 5
load_impedance() (in module AcousticRes-

onator), 16
load_profile() (in module Profiles), 4
load_simulation() (in module Simulation), 27
lt (in module AcousticResonator), 14
lv (in module AcousticResonator), 14

M
MeasuredImpedance (class in AcousticRes-

onator), 19
ModalExpansionEstimation (module), 20
multiple_circles() (in module ModalExpansion-

Estimation), 22

N
nu (in module AcousticResonator), 14

O
OneDOFOscillator (class in Valve), 11

P
physical_constants() (in module AcousticRes-

onator), 14
play() (Simulation.TimeDomainSimulation

method), 26
Profile (class in Profiles), 3
Profiles (module), 1

R
reconstruct_spatial_field() (Simula-

tion.TimeDomainSimulation method),
27

ReedDynamics (class in Valve), 12
restore() (in module AcousticResonator), 16
rho (in module AcousticResonator), 13

S
save() (AcousticRes-

onator.TimeInvariantImpedance
method), 17

save() (AcousticRes-
onator.TimeVariantImpedance
method), 16

save() (Profiles.GroupProfiles method), 5
save() (Profiles.Profile method), 4
save() (Simulation.TimeDomainSimulation

method), 27

save_wav() (Simula-
tion.TimeDomainSimulation method),
26

set_initial_state() (Simula-
tion.TimeDomainSimulation method),
24

set_integrator() (Simula-
tion.TimeDomainSimulation method),
25

Signal (class in Profiles), 7
Simulation (module), 22
snCn2wnqnZn() (in module AcousticRes-

onator), 17
Spline (class in Profiles), 6

T
TimeDomainSimulation (class in Simulation),

23
TimeInvariantImpedance (class in AcousticRes-

onator), 16
TimeVariantImpedance (class in AcousticRes-

onator), 14
trace() (AcousticRes-

onator.TimeVariantImpedance
method), 15

trace() (Simulation.TimeDomainSimulation
method), 25

trace() (Valve.TransferFunction method), 10
TransferFunction (class in Valve), 9

V
Valve (module), 8

W
wnqnZn2snCn() (in module AcousticRes-

onator), 18

38 Index

	Profiles – Time-varying quantities
	Academic profiles
	Using measured values

	Valve – Specifiyng the mechanical resonator
	Simple examples of Valve

	AcousticResonator – Specifiyng the acoustical resonator
	Physical constants
	General class: everything can be time variable
	Time-invariant version
	Cylindrical bore
	Measured Impedance
	References

	Simulation – Time-domain simulation
	Defining the problem
	Configuring the solver and integrate
	Postprocessing
	Data persistence

	Indices and tables
	Bibliography
	Python Module Index
	Python Module Index
	Index

